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Target selection has always been a popular re-
search topic in the human-computer interaction
(HCI) community. Systems with continuous in-
teractive spaces, such as video games, augmented
reality (AR), and virtual reality (VR), are becom-
ing ubiquitous. A good understanding of the pro-
cess properties (e.g., trajectory and speed profile)
of target selection is important as it can provide
insight and guidance on the effects of practice on
performance, rational decision-making, and layout
design in these user interfaces [1]. Despite exten-
sive HCI investigations of human performance in
target selection, most have focused on interaction
results (e.g., duration [2] and endpoints [3]), and
few have studied the process properties of target-
selection motion.

The application of optimal control theory to
modeling target selection motion is conceptually
appealing. This theory describes movement based
on the concurrent consideration of effort, speed,
and accuracy, and is highly consistent with the
common understanding of interaction behaviors.
The optimal feedback control (OFC) system is a
closed-loop optimal control system that makes de-
cisions regarding the control of a plant at each time
step based on feedback information. Compared to
open-loop systems, it performs in a more human-

like pattern characterized by a constant creation
process in response to unpredictable fluctuations
from the planned trajectory [4].

In contrast to traditional human performance
models [2, 3], the output of an OFC system is a
simulation set that contains multiple replications
of a specified movement, and the adjustment and
evaluation of this system relies on the similarity of
the simulation and empirical data sets. However,
to our knowledge, there is no such definition of
similarity in the HCI literature, so a golden stan-
dard is needed.

In this article, we simulate target-selection mo-
tion with approximate profiles of the trajectory
and motion uncertainties in the empirical data.
We propose a framework based on the OFC sys-
tem that describes target-selection motion. We in-
vestigated two kinds of typical interaction tasks—
static- and moving-target selection—and (1) for-
mulated these tasks as OFC systems; (2) mea-
sured their similarity to estimate key system pa-
rameters based on empirical data; and (3) used
these estimated parameters in the system to simu-
late target-selection motions and evaluate the sim-
ulations. The experimental results show that the
trajectory and variability of users’ motions are
well simulated by our framework, which can repro-
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duce many of the important characteristics of hu-
man motion in target selection, such as the speed-
accuracy tradeoff [3] and feedback-decision uncer-
tainty [5].

To model target-selection motion, we adopted a
linear-quadratic-GaussianOFC system [4]. We ap-
proximated the movement of the pointing devices
by mass point pushing with a controlled force,
which can be formulated as a linear dynamical sys-
tem with the state xt ∈ R

m, control ut ∈ R
n, and

feedback yt ∈ R
k in discrete time t ∈ [1, N ], as

follows:

Dynamics xt+1 = Axt +But + ξt + εtCut,

Feedback yt+1 = Hxt + ωt,

Cost
n∑

t=1

xT
t Qtxt + uT

t Rut.

(1)

We developed formulations of the two types of
interaction tasks and selected the system parame-
ter set θ = [σc, σp, σv, σf , r, wv, wf ] as key param-
eters to produce better simulations. We selected
these parameters as they significantly affect the
trajectory and trajectory variabilities of the sim-
ulation (see Appendix A.1 for more details). In-
spired by the authors in [6], we defined a mea-
surement for similarity that considers the errors
of both the trajectory and the trajectory variabil-
ity in the simulated and experimental trajectory
sets. Then, we used this similarity value as a cost
function to estimate the θ∗ value that generates a
simulation with the highest similarity to the em-
pirical data.

J(θ) = trE× vaE,

trE =
1

n

n∑

i=1

||psi − pei ||,

vaE =
1

n

n∑

i=1

||varsi − varei ||,

(2)

where trE and vaE are the average Euler distances
between the mean point position and the variabil-
ity along the trajectory, respectively. They mea-
sure the trajectory and variability similarities of
the two trajectory sets. To estimate θ∗, we devel-
oped a random search algorithm that iteratively
compares newly generated simulations with the
data, the details of which are shown in Appen-
dix A.2.

To generate empirical data for estimating the
parameters, we conducted two experiments involv-
ing static- and moving-target selection. As point-
ing and feedback devices, we used a computer
mouse and a 23-inch (533.2×312 mm) LED dis-
play at 1920×1080 resolution, respectively. In the

static-target selection, for the target, we used a cir-
cle with a diameter of 48 pixels that was 480 pixels
away from the center of the display. In the moving-
target selection, we initialized the same target at
the same position but moved it with speed of
144 pixels/s in eight directions, as shown in Fig-
ure 1(a).
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Figure 1 (Color online) Experiment and simulations.
(a) Experimental setup for static- and moving-target se-
lection; (b) simulation results and empirical data for static-
target selection with the solid line representing the mean
trajectory of movements and the dashed line representing
the trajectory variability; (c) simulation results and empir-
ical data for the eight directions (in different colors) of the
moving-target selection.

We recruited twenty subjects (6 females and
14 males, with an average age of 26.3 years) to par-
ticipate in the experiment. All were right-handed
and had more than 2 years of experience using a
computer and mouse. In each trial, the cursor was
first fixed in the center of the display and the tar-
get appeared after a short time. Then, each par-
ticipant was asked to move the cursor to acquire
the target as quickly and accurately as possible.
Participants had only one chance to select the tar-
get. If a participant failed to select the target,
he/she had to perform the failed trial again. For
the static-target selection, each participant com-
pleted six selection tasks. For the moving-target
selection, each participant completed six selection
tasks in each of the eight directions. All the tri-
als in the moving-target selection experiment were
randomly ordered.

We estimated the system parameters for the
nine tasks. Beginning with the initial simulated
data, the algorithm iteratively searches for θ∗.
To accelerate the convergence, we set the ini-
tial searching range as µ = [0 0 0 0 0 0 0];∆ =
[1000 1000 1000 1000 1000 1000 1000] for all the
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static- and moving-selection tasks. We set the co-
efficient of convergence ϕ to 0.05 and the maxi-
mum number of iterations to 20.

In the searching process, the algorithm must
use the OFC system repeatedly to simulate a tra-
jectory in a specific task setup. Specifically, in
each iteration, we simulated trajectory sets con-
taining equal numbers of experimental data to
compute the cost function J(θ). To simulate a
trajectory for one of the nine task situations, we
initialized the cursor at a mean state of xt =
[0 0 0 0 0 0 0 0 p∗x(0) p∗y(0)] with covariance Σ1.
For static-target selection, we fixed the target in
the position (480×0) by p∗x(t) = 480, p∗y(t) = 0
(t = 1, 2, . . . , N), and for the moving-target se-
lection, we set the target’s position as p∗x(t) =
480 + t × vx, p

∗
y(t) = 0 + t × vy (t = 1, 2, . . . , N),

where v = [vx, vy] corresponded to the moving di-
rections, for instance, v = [1.44, 0] for the right-
hand direction. Each simulation trial ended when
the condition ||p(t)−p∗(t)|| < 48 was held for more
than 0.5 s, that is, 50 time steps.

Figure B1 (Appendix B) shows the final es-
timated parameters for the static- and moving-
target selections. For the moving-target selection,
we used eight sets of parameters obtained from
eight directions, and used their mean values as the
final estimated parameters.

Using the above two parameter sets, we simu-
lated 120 trajectories for each of the nine target
selection tasks. Figures 1(b) and (c) show their
mean trajectory and trajectory variability, respec-
tively. As shown, our system closely simulated the
mean trajectories and trajectory variabilities of all
the experimental conditions. The trajectory error
trE and variability vaE, in Table B2 (Appendix B),
shows the quantitative similarity between our sim-
ulation and the data. For the static target, the
average error of the mean trajectory is 9.86 pixel
(1.70% of the trajectory length) and the variabil-
ity is 17.89 pixel (3.86% of the overall variability).
For the eight moving targets, the average errors are
in the ranges of [22.14 pixel (6.59%), 52.07 pixel
(10.56%)] and [27.03 pixel (3.28%), 49.75 pixel
(5.60%)], respectively. These results indicate that
the target-selection motions were well simulated
by our framework.

Figures B1 and B2 (Appendix B) show all the
simulation results for the static- and moving-target
selections compared to the empirical data. In gen-
eral, we found that users tend to combine prede-
termined and tracking actions while performing
selection movements, initially moving the cursor
in a relatively straight line to the expected po-
sition and then turning smoothly to the target.
Our system recreated this behavior. On the other

hand, users also display unconscious cursor tur-
bulence and continuously correct their actions [5],
which results in different movement trajectories
but always success in acquiring the target. Our
system also reproduced this behavioral property.
In addition, our system recreated another well-
known property of reaching movements, which are
a trade-off between speed and accuracy [3], for
which variability increases with increased moving
speed.

In the future, our framework could be used for
guiding the design of user interfaces. For exam-
ple, by simulating users’ motions on a shopping
website, we can evaluate the complexity and ef-
ficiency of the purchasing of commodities on the
website. Our study may also provide new per-
spectives for understanding other HCI research is-
sues, such as complex interaction movements [7]
and multimodal fusion and coordination [8].
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